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Abstract: Magnetometer calibration is a pre-processing step in the Attitude and Heading Reference Systems (AHRS) which 
has an essential role in many applications. The main purpose of this article is to derive an innovative and precise calibration 
approach for a magnetometer set installed on human body. To execute this calibration method, all the error parameters of multiple 
magnetometers are considered in an Unscented Kalman Filter (UKF) model for accurate estimation of calibration parameters. As 
achieving a precise estimation in Kalman filters-based algorithms needs an accurate and complete observation model, a special 
single-axis rotation trajectory for Inertial Measurement Unit (IMU) is performed to increase the observability rank of the 
calibration model. To evaluate the proposed method, five body-mounted sensors were experimented in the laboratory at the same 
time for applying in the body motion capture system. The results showed that all five sensors were well-calibrated without any 
need to be detached from the body and using any rotational robot arm. The resolution and precision of the proposed calibration 
method are assessed by the ellipsoid-fitting representation method. Consequently, all the body-mounted magnetometers were 
calibrated, on average, by about 1% uncertainty. The method can be used in every motion capture and AHRS applications due to 
its feasibility and simplicity. 

Keywords: Magnetometer Calibration, Calibration, Motion Capture, Magnetometer, Inertial Sensors,  
Unscented Kalman Filter, MEMS 

 

1. Introduction 

With prompt advancements in technology, the development 
of Microelectromechanical Systems (MEMS) has been under 
deep investigation of researchers and industries. The 
integrated MEMS technology has had underlying impacts in 
various applications like Inertial Navigation Systems (INS), 
positioning and guidance, body motion capture, Attitude and 
Heading Reference Systems (AHRS), object tracking, etc. The 
magnetic field can be considered as an important 
measurement in Kalman Filter (KF)-based AHRS [1, 2], INS, 
and motion capture models [3], also, some important attitude 
determination methods utilize the magnetometer as a compass 
to reduce the heading drift in Heuristic Drift Reduction (HDR) 

algorithm [4]. The mentioned systems are usually 
implemented using 9 Degrees of Freedom (DoF) inertial and 
magnetic sensors, namely, three-axis accelerometer, three-axis 
gyroscope, and three-axis magnetometers. The long-term 
accuracy of these systems is partially based on the system’s 
calibration. Although many methods aim to calibrate the bias 
and other error parameters of inertial gyroscope and 
accelerometers onboard, calibration of magnetometers is 
dependent on various parameters which made it more 
challenging. Calibration of magnetometer pertains to various 
parameters and error sources like bias, misalignment error, 
soft and hard iron effects, and the scale factor. The hard-iron 
effect is usually caused by the materials which generate a 
constant offset to each magnetometer axis. This constant 
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distortion depends on the position and orientation of the 
material relative to the sensor. However, the soft-iron effect is 
not necessarily constant which means, it can be compensated 
with more difficult procedures. Moreover, the soft-iron 
distortion is related to the attitude of the material relative to 
the magnetic field, and the sensors [1]. 

Orientation estimation and especially, the heading needs 
accurate magnetometer data, with respect to the fact that the 
heading is strongly vulnerable to magnetic disturbances. 
Although obtaining precise magnetometer data depends on the 
environment situation, presenting the suitable sensor’s model 
has a significant impact on the calibration results. Apart from 
that, the calibration precision is under effect of temperature 
and pressure, especially in spacecraft and aerospace 
utilizations. In the class of environmental disturbance, the 
hard iron disturbances are usually caused existence of 
ferromagnetic objects and materials with continuous magnetic 
fields, on the other hand, the soft iron perturbations are 
commonly affected by the variation of surrounding magnetic 
fields. Most of the magnetometer calibration methods are 
based on batch methods in which the magnetometer’s data is 
recorded to process and obtain the calibration parameters. 
Also, some methods have utilized the motion trajectory for the 
magnetometer which needs each sensor to be rotated in the 
same trajectory. These methods need to implement the 
rotation trajectory for all the sensors one by one, especially in 
body motion capture applications that the mounted sensors are 
in various coordinate and axis locations. In the traditional 
methods, for following the trajectory, each sensor should be 
rotated around its x, y, or z-axis, while all the sensors are 
mounted on the body and implementing these trajectories are 
consuming the time, energy, and detachments. In this paper, 
the new method is presenting using single axis motion 
trajectory and UKF model which is not dependent on the 
attitude of the sensor’s coordinates. The error parameters of all 
the body-mounted sensors can be estimated at the same time 
with acceptable accuracy. 

In Section 2, we present an overview of previous works and 
papers, relevant to our research. In Section 3, we presented a 
model for the error of one magnetometer set which consists of 
five magnetometer sensors mounted on the body, also, the 
UKF parameters and update stages are discussed completely. 
The details of the proposed method, rotation trajectory, and 
observability analysis are described in section 4. The 
experiment, results, and statistical analysis are presented in 
Section 5 and finally, the conclusions from the paper and 
future directions are presented in Section 6. 

2. Related Works 

Precise output data from nine Degrees of Freedom (DoF) 
Inertial Measurement Unit (IMU) comprised of 3-axis 
accelerometer, 3-axis gyroscope, and 3-axis magnetometer, is 
needed in many applications like Inertial Navigation Systems 
(INS), Attitude and Heading Reference Systems (AHRS), 
missile guidance, body motion tracking, and spacecraft. Apart 
from the importance of the accelerometer and the gyroscope 

calibrations, magnetometer calibration has a particular impact 
on the result of mentioned systems due to its impressionability 
from kinds of magnetic distortion. Besides bias, scale factor, 
and nonorthogonality parameters which are common in all 
inertial sensors, magnetometer calibration requires the 
estimation of soft and hard iron effects. With investigating the 
papers and previous works about magnetometer calibration, 
most of the methods can be categorized in Kalman-based 
algorithms, Least Square (LS) Solutions, Maximum 
Likelihood estimators (ML), optimization approaches, and 
IMU rotation methods. 

A nonlinear least square and simple batch LS method has 
experimented, which demonstrated the reduction in standard 
deviation [5, 6]. Also, in parallel, the significant effort was 
done in regular ML filters and estimators with quartic 
subjective function [7], and ML calibration with combination 
of sensors [8]. A swarm optimization algorithm was 
performed in some works which are more likely to be used in 
spacecraft application due to its independency to alignment 
procedure [9]. Many endeavors were accomplished also in 
Kalman-based calibration algorithms in which linear or 
nonlinear sensor models were designed for estimating the 
calibration parameters. Calibration with Kalman Filter (KF) 
and covariance matrices [10], Extended Kalman Filter (EKF) 
designs [11], the combination of EKF with semi-random 
motion sequence [12], adding the gyroscope’s output as 
observation in EKF [13], and Unscented Kalman Filter 
(UKF)-based calibration system [14] showed that in some 
cases, EKF can be more precise method due to its 
compatibility and reliability in many applications. However, 
in this paper, a novel observability analysis method and an 
IMU rotation technique aided a UKF estimator with extremely 
nonlinear measurement model. The defined states of the UKF 
system have been estimated with higher observability rank 
after performing the rotation technique. Apart from that, this 
method presents a precise estimation of calibration parameters 
with single rotation for all IMUs mounted on the body, which 
prevent to perform the rotation for the IMUs, one by one. 

Another algorithm category utilizes IMU rotation with both 
pre-defined or unknown trajectory which all of them since 
now need turntable or rotatory platform for rotating the IMU 
in an exact defined angle which is the main disadvantage of 
them as it is unacceptable for applications like motion capture 
that prefer to perform the calibration on body-mounted 
sensors. Calibration using 3-axis rotation platform [15], and 
1-axis rotation [16] are designed and examined. Also, there 
were some efforts in magnetometer calibration with 
estimating the calibration nonlinearity coefficients [17], 
however; one of the most reliable and practicable calibration 
methods is calibrating using the ellipsoid fitting algorithm, in 
which fitting the calibrated data of magnetometer with unit 
ellipsoid shape has been the evaluating parameter for 
calibration’s accuracy [18]. The Triad and UKF algorithms are 
investigated for real-time magnetometer calibration and 
attitude estimation [19]. However, these algorithms presented 
an accurate orientation results only for the satellite 
applications and it can not be extended to various demands. A 
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great effort has been shown on accuracy improvement of 
heading using calibrated data of magnetometer in real-time 
[20]. Their design has demonstrated two degrees reduction in 
residual magnetic heading error; however, the system did not 
study with the uncertainty of calibration parameters. Some 
novel calibration methods like utilizing BP neural network 
and artificial data are considered in recent years [21, 22]. In 
this paper, the magnetometer sensors are modeled for UKF to 
estimate the calibration parameters and the single rotation 
trajectory is defined in any initial attitude of sensors to 
increase the observability rank of the calibration model. the 
rotation trajectory does not need any detachment and can be 
performed as the sensors are mounted in the body. Finally, the 
method tested with real low-cost 9-DoF IMUs for motion 
capture application. 

3. Error Model of a Magnetometer Set 

3.1. UKF State Space Model 

The Complete model of error for a triad magnetometer of an 
IMU is considered in Eq. (1) [18]. 

�� = Am + b + �               (1) 

In which, ��  and m are uncalibrated and calibrated 
magnetometer data, respectively. A is a three-dimensional 
matrix that consists of combination of the scale factor, 
nonorthogonality, and soft iron error parameters, also, b and � 
are combined bias vector and measurement noise, respectively. 
A and b are defined in (2) and (3) [18]. 

� = ����_
��
               (2) 

� = ����_
��
 + ����              (3) 

The �, and � are the scale factor and the nonorthogonality 
matrices, respectively, Also, the parameters ��_
��
 , ��_
��
 
and ���� are 3 by 3 soft iron effect matrix, hard iron effect 
vector, and the sensor’s offset, respectively [18]. The complete 
calibration can be performed with the estimation of bias and A 
matrix due to the calibration equation in Eqs. (4) [18]. 

� =  ���(�� − �)              (4) 

Because the magnitude of the true local magnetic field in 
the same location should be constant, the given norm in the Eq. 
(5) should be a constant value. Therefore, the (���)����, and 
consequently, � must be symmetric matrices that the Eq. (5) 
be considered as an ellipse with center of � and a tilt shape 
originated from the A [23]. 

���� =  ��� =  ����(�� − �)�����(�� − �) 

=  (�� − �)�(���)����(�� − �)          (5) 

� =  ���� ��� ������ ��� ������ ��� ���                (6) 

As matrix A, given in Eq. (6) is a symmetric matrix, the 

state vector of the UKF model is comprised of ���, ���, ���, ���, ��� and ��� as elements of A matrix, �!, �" and �# as 
elements of bias vector and �! , �"  and �#  as calibrated 
magnetometer estimations. Eqs. (7-10) demonstrate the state 
transition model of UKF for a magnetometer set included n 
magnetometers [23]. The total states of the system are 12n 
consists of 3 states for calibrated magnetometer data, 6 states 
for elements of matrix A and 3 states for bias for each sensor. 

$%&� =  '% $% + (% , 
$% =  *��, ⋯ , �
, ��, ⋯ , �
, ��, ⋯ , �
,�      (7) 

'% =  - .% 0�
×1
01
×�
 21
×1
 3            (8) 

.% =  45%� 0 00 ⋱ 00 0 5%

7               (9) 

5%
 =  4 1 −9#
. ;< 9"
. ;<9#
 . ;< 1 −9!
 . ;<−9"
 . ;< 9!
 . ;< 1 7    (10) 

In which, n is the number of sensors and �
, �
 and �
 

are the states of sensor n. �
 = =�!
, �"
 , �#
>�
, in which the 

elements of that are calibrated magnetometer output in three 
axes. elements of soft iron, hard iron, and scale factor 
combined matrix for sensor n is defined as �
 = *���
 , ���
 , ���
 , ���
 , ���
 , ���
 ,� . Moreover, 9!
 , 9"
 , and 9#
 are calibrated gyroscope’s outputs and elements of bias 

vector for sensor n in its three-axis is �
 =  =�!
, �"
, �#
>� . 
Also, 2 is the identity matrix, and dt defined as the sampling 
time. The nonlinear observation model is defined as Eqs. 
(11-13), in which the uncalibrated magnetometer 
measurements are measurements of the system and �? 
defined as a white Gaussian noise [24]. 

@% = ℎ($%) + �?, ℎ($%) =  *ℎ�($�%), ⋯ , ℎ
($
%),� (11) 

ℎ
($
%) = 4�11
 �12
 �13
�12
 ���
 ���
�13
 �23
 ���
 7 4�$
�"
�#

7 +  4�$
�"
�#


7   (12) 

ℎ($%) =  *��  … �
, ���⋮�
 + ���⋮�

        (13) 

Where, the ℎ
($
%)  is the measurement of the n-th 
magnetometer sensor. The UKF estimation is performed for 
this system with a linear state transition matrix and a nonlinear 
observation matrix. 

3.2. UKF Updates and Parameters 

As the Unscented Kalman filter utilizes the extension form 
of Unscented Transformation (UT), it needs to define a new 
state model with original states and noise variables. At the first 
stage, the sigma point is obtained using the propagation of a 
random variable $ through a nonlinear function, F($). The 
new propagated state, $%G , is defined as Eq. (14), also, the 



4 Farzan Farhangian et al.:  A Magnetometer Calibration Method Using Single-Axis Motion Trajectory and   
Unscented Kalman Filter for Body Motion Capture Applications 

corresponding sigma matrix, H%I  is mentioned in the Eqs. 
(15-17). 

$%G = *$%� (%� J%�,�            (14) 

H%G =  $K                  (15) 

H%G =  $K +  �L(M +  N)O!�
 , P = 1, … , M     (16) 

H%G =  $K −  �L(M +  N)O!�
�Q , P = M + 1, … , 2M   (17) 

Where, $K is the mean value of a random variable, O!G is its 
Covariance, L is the dimension of the random variable, and N 
defined as scaling parameter with value of R�(M + S) − M. 
Herein, R is a constant, that determines the distribution of 
sigma point around the mean value. R should be usually a 
small value so, here it is defined as a unit value. Also, S is 
equivalent to 3-L. Therefore, the sigma points matrix is 
defined is Eq. (18). 

H%��G = =$T%��G $T%��G + �L(M +  N)O%��G �
 $T%��G − �L(M +  N)O%��G �
> (18) 

The Eqs. (19-23) demonstrate the time update section of the 
UKF model. 

H%|%��! =  '*H%��! , H%��V ,            (19) 

$T%� =  ∑ X
(?)H
,%|%��!�Q
YZ          (20) 

O%� =  ∑ X
([)*H
,%|%��! − $T%�,*H
,%|%��! − $T%�,��Q
YZ   (21) 

\%|%�� =  ]*H%|%��! , H%��
 ,           (22) 

T̂%� =  ∑ X
(?)\
,%|%���Q
YZ           (23) 

Where, X
  are the UKF weights with values of 0.5(M +N)�� for both X
(?), and X
([). To update the measurement, 
the Kalman gain should be calculated. Eqs. (24-28) are 
mentioned in the measurement update stage for the UKF 
model. 

O"_`"_` =  ∑ X
([)*\
,%|%�� − T̂%�,*\
,%|%�� − T̂%�,��Q
YZ  (24) 

O!`"` =  ∑ X
([)*H
,%|%�� − $T%�,*\
,%|%�� − T̂%�,��Q
YZ  (25) 

a =  O!`"`O"_`"_`��               (26) 

$T% =  $T%� + a(^% − T̂%�)            (27) 

O% =  O%� − aO"_`"_`a�             (28) 

Here, the \
,%  is the corresponding measurement of the 
UKF system in i-th row of the measurement matrix and 
time-step k. Also, K is the Kalman gain and $T% is the final 
estimated state. To initialize the system, the initial states, 
initial covariance matrix, initial new propagated state vector, 
and the initial random variable’s covariance should be 
determined, as Eqs. (29-32). 

$TZ =  E*$Z,               (29) 

OZ =  E*($Z − $TZ)($Z − $TZ)�,        (30) 

$TZG = c*$G, = *$TZ� 0 0,�            (31) 

OZG =  E*($ZG − $TZG)($ZG − $TZG)�,        (32) 

4. Proposed Method 

The main subjective of the proposed method is rotation of 
several body mounted IMUs for increasing the observability 
rank of the system. As a result, the proper mathematical 
metrics should be defined for analyzing the observability of 
the complete system. The methods for this analysis are 
different before and after performing the rotation algorithm 
since by performing the proposed method, the problem will be 
changed from a discretized time-variant system to a brief time 
interval system and each rotation will be defined as an interval 
in the calibration process. The nonlinear observability analysis 
is considered to determine the observability rank of the system 
before the proposed method and the Piece-Wise Constant 
System (PWCS) analysis method is applied to determine the 
rank of observability after executing the method. For 
investigating nonlinear observability, the Lie derivative 
function is required, and by calculating the rank of Jacobian 
for d($, e), the observability condition of the defined system 
will be examined. As @% consists of three observation in three 
x, y, and z axes, the observation function has three elements of ℎ�, ℎ� and ℎ�. The Lie derivative equations are considered in 
Eqs. (33-35) [25]. 

f
Z = ℎ
 
f
g =  hijklm

h!  ' +  ∑ hijklm
hn(`)  g��%YZ e(%&�)       (33) 

d($, e) = �ℎ�, f��, … , f
%m��, … , ℎ?, f?� , … , f?%o�� ��
  (34) 

p�Jq rhs(!,n)h! t = u�v             (35) 

The u�v amount determines the observability rank of the 
system. For the system with n sensors, the full observability 
rank is 12n with regards to the model defined in the Eq. (7). 

4.1. PWCS Observability Analysis Method 

The Piece-Wise Constant System (PWCS) is kind of 
observability analysis method for linear time-variant systems 
that investigate the observability rank with the least amount of 
computation [26]. As our system is completely nonlinear, for 
analyzing the observability in short term rotation intervals, the 
measurement model of the system should be linearized with 
obtaining the Jacobian matrix, as Eq (36). 

]% =  h�(!)h!                   (36) 

For the system consists of ['% ]%], the observability rank in 
an interval of (q, q + 1) is the rank of stripped observability 
matrix (SOM) which is defined in Eqs. (37, 38) [26]. 

w% =  *]%� (]%'%)� (]%'x�)� ⋯ (]%'x
��)�,� (37) 

�S�(q) =  *w� w� ⋯ w%,�      (38) 
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4.2. Body Rotation Trajectory 

Five IMUs, each one consists of a 3-axis accelerometer, a 
3-axis gyroscope, and a 3-axis magnetometer, considered a set 
of IMUs which are installed on the body. The objective of the 
proposed calibration method is to calibrate all the 
magnetometers at the same time while mounted on the body. 
In contrast to other rotation-based calibration methods, this 
method does not need any detachment from the body for 
performing the rotation. Figure 1 demonstrates five upper 
body-mounted sensors. 

 

Figure 1. Rotation Trajectory for magnetometer set calibration of five upper 

body-mounted IMUs. 

The rotation trajectory is performed in 7 steps (with 
considering the initial step) and 6 movements. The number of 
states with these five sensors is 60, in total. After calculating 
the observability rank of the system before performing the 
proposed method with the nonlinear observability analysis 
method, the observability rank of the system obtained as 40, 
which shows that the system does not have full observability 
rank. However, the proposed rotation trajectory was 
performed with five body-mounted IMUs in 7 time-steps. If ℎ
($
%)  defined as the measurement of sensor n in the 
time-step k, there are 7 measurements in the proposed rotation 
trajectory. For the sensors installed in right and left hands, the 
rotation is among the z-axis, and for the other sensors which 
mounted on the chest, the rotation is among its y-axis. The 
observability rank of the general system after the time-step 7 is 
calculated as SOM matrix which obtained from ]�, … , ]y, as 
Eq. (39). 

�S��7� �  { ]�]�'�E]�'���
]�]�'�E]�'��� + ]y]y'yE]y'y��|

�
      (39) 

The rank of the mentioned SOM matrix after the proposed 
7-step rotation trajectory was calculated as 57 observable 
states. Although the observable states are not still full rank, the 
proposed method has shown the improvement in state 
observation of the system, which can lead to progress the 
inaccuracy of state estimation is the UKF system. 

5. Experimental Evaluation 

The experiment was performed with five MEMS-based 
9-DoF IMUs mounted on the torso, right and left upper arm, 
right and left forearm. The environment of the experiment was 
in a laboratory full of electronic equipment and iron materials, 
which leads to providing a situation of medium-level magnetic 
disturbance for each sensor. To perform the rotation method, 
no precise rotational platform was used in the experiment, and 
the rotations were performed only with a degree rated surface 
plate on the ground which was marked in }90°. Using no 
precise rotation platform was because of validating the 
experiment with accuracy uncertainty of }3%  in rotation 
which means that the method can be reliable even with 2~3° 
error in rotation. Figure 2 presents the hardware setups utilized 
in the experiment. 

5.1. Hardware and Software Setup 

A set of five MPU-9250 IMUs was selected for the 
experiment, which all of them connected to a PC using a USB 
serial communication for recording the 3000 data in 30 s with 
100 Hz sampling frequency. The data was recorded before and 
after the calibration. Finally, the method was implemented 
using MATLAB software in which, the bias vector b and the 
matrix including soft iron, hard iron, and scale factor were 
estimated using UKF for each sensor, as described in Table 1. 
For evaluation of the results, the ellipsoid fitting method is 
used to fit the 3-axis magnetometer points on a unit sphere. 
The results have shown that the calibration is well performed 
due to locating most of the points on the unit sphere. The data 
recording process was performed in 30 seconds. The number 
of magnetometer samples for each sensor is about 3000. The 
comparison between uncalibrated and calibrated data with the 
proposed method has been shown in figures 3 to 5. The data 
has been normalized to be located on the unit sphere. Figures 
3-5 demonstrate the calibrated and uncalibrated magnetic field 
data for all the body-mounted sensors after normalization. 

 

Figure 2. The experimental setup using five MPU9250 IMUs mounted on the 

body in the LASSENA laboratory. 

5.2. Results 

All the estimated states after performing the proposed 
method are considered in this part. It can be seen that the error 
parameters of calibration method are well estimated so, the 
calibrated data is located on the unit sphere with acceptable 
accuracy. The proposed method could show its functionality 
to be used for all the body-mounted sensors with just one 
single rotation. 
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As the precise rotation needs extremely accurate turntable 
or robotic arms, the uncertainty of calibration is merely 
dependent on the rotation accuracy in the figure 1. 

Nevertheless, the paper’s target is presenting the low-cost 
rotation method without any peripheral equipment. 

 

Figure 3. Comparison of calibrated and uncalibrated magnetic field data for (a): Left forearm sensor, and (b): Upper left arm sensor. (Blue color points: 

normalized uncalibrated data, Red color points: normalized calibrated data). 

 

Figure 4. Comparison of calibrated and uncalibrated magnetic field data for (a): Upper right arm sensor, and (b): Right forearm sensor. (Blue color points: 

normalized uncalibrated data, Red color points: normalized calibrated data). 

 

Figure 5. Comparison of calibrated and uncalibrated magnetic field data for 

the torso sensor. (Blue color points: normalized uncalibrated data, Red color 

points: normalized calibrated data). 

Table 1. Estimated calibration parameters for bias vector and ��� Matrix for 

all sensors. 

Sensor’s 

Position 
Bias Vector 

��� Matrix (soft and hard iron 

effects, scale factor) 

Torso � �53.0381286.5851�268.9892   � 0.1504 �0.0226 0.0022�0.0226 0.1371 0.00850.0022 0.0085 0.1455   

Upper right arm � �33.7765396.7116�206.7799   � 0.1121 0.0022 �0.00120.0022 0.1120 0.0039�0.0012 0.0039 0.1064    

Right forearm � �56.2727405.4633�221.8094   � 0.0814 0.0032 �0.00300.0032 0.0872 0.0024�0.0030 0.0024 0.0766    

Upper left arm � �24.9804368.6235�190.7370   � 0.0981 0.0013 �0.00280.0013 0.0913 0.0002�0.0028 0.0002 0.0884    

Left forearm � �75.0326425.0356�266.5343   � 0.1645 �0.0019 �0.0053�0.0019 0.1457 0.0056�0.0053 0.0056 0.1336    
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With respect to this fact, the overall calibration of all the 
body-mounted magnetometers has proved the feasibility of 
the proposed method. Figures 6 and 9 represent the 
comparison of normalized magnetic field data for 30 seconds 
experiment for all five sensors. The normalized calibrated 

magnetometer outputs are approximately close to the unit 
value. Analysis of mean square error for all sensors is 
considered in the next subsection. Also, figure 10 shows the 
magnified view of the normalized calibrated magnetometer 
output for all body-mounted sensors. 

 

Figure 6. The magnetic field data during 30 seconds after and before calibration for left forearm (fl), right forearm (fr), and torso sensors. 

 

Figure 7. The magnetic field data during 30 seconds after and before calibration for upper left arm (ul), and upper right arm sensors. 

 

Figure 8. Normalized calibrated magnetic field for the left and right upper arm sensors. 
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Figure 9. Normalized calibrated magnetic field for the torso, right, and left forearm sensors. 

5.3. Statistical Error Analysis 

The calibrated data in all five sensors are estimated and the 
Interquartile Range (IQR) method is performed to detect the 
outliers. This crucial step is done to make the measurements 
more meaningful. The outliers are defined as observations that 

fall below w� � 1.5�2w��  or above w� � 1.5�2w�� , in 
which w�  and w�  are first quartile and third quartile, 
respectively. Based on this method, 1439 points have been 
detected and removed as outliers [27]. 

 

Figure 10. Rotation Trajectory for magnetometer set calibration of five upper body-mounted IMUs. 

The left forearm sensor has the most dispersion around the 
reference which can be because of the sensor’s precision, 
physical specification, and other environmental effects. The 
other investigation in accuracy of calibration has been 
performed by Mean Squared Error (MSE) analysis. The 
formula for obtaining this error analysis is pointed in Eqs. (40, 
41) [28]. 

��c���� � ��p����� � �P�v���, ���,      (40) 

��c���� �  c�=��� � ���>,         (41) 

In which, �� and � are estimated and true unit reference as 
norm of each magnetometer data. Table 2 shows the MSE for 
each sensor. 

 

Figure 11. Error distribution graph for all five magnetometers. 
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Table 2. MSE of all sensors for 3000 samples and 30 s experiment. 

Left 

forearm 

Right 

forearm 
Torso 

Upper left 

arm 

Upper 

right arm 

0.03207 0.00237 0.00930 0.00277 0.00209 

It is demonstrated that the calibration error showed a 
negligible amount, which means that most of the 
magnetometer sensors have been calibrated with high 
precision, while mounted on the body. Also, figure 11 
illustrates the distribution of error for each sensor. Upper right 
arm, upper forearm, and left forearm sensors are 
approximately calibrated as the same resolution, however; 
calibration accuracy of the torso and right forearm sensors 
have had more error desperation. The method prevents 
detaching the sensors one-by-one for calibration, especially in 
body motion capture applications, in which it can be 
time-wasting and difficult that all the sensors and other 
equipment be detached and calibrate separately. 

6. Conclusion 

In this paper, a 7-steps single-axis motion trajectory is 
designed to increase the observability of magnetometer error 
parameters. Because of an extreme nonlinear measurement 
sensor’s model, the UKF system is designed to estimate the 
observable states of the calibration model. The most 
important contribution of this research is to increase the 
observability rank of complete system consists of 5 body 
mounted magnetometers without any multi-axis rotation 
trajectories, detachments, and expensive equipment. The 
observability rank of the system has been progressed from 40 
to 57 with the proposed motion approach. The calibration 
effect of proposed methods verified has been assessed in an 
experiment in a real environment, and the results show that 
the body-mounted sensors are calibrated with MSE of about 
0.01 in 30 s. 

There are multiple research gaps which can be covered by 
future investigations. Firstly, observability is still not full rank 
which means the system can show more accurate calibration 
results by improving the more precise state estimator or sensor 
modeling. Secondly, the uncertainty of estimated parameters 
can be studied in different environments like high and medium 
magnetic distortions, also, in the vicinity of different hard iron 
and soft iron materials. Thirdly, the calibration’s influence in 
the results of motion capture and object tracking algorithms 
can deeply be surveyed. The impact of the proposed method in 
positioning and attitude results of various kinematic models 
can also be verified. 
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